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Solutions to Problems 4.1–4.6

Problem 4.1: Properties of the Entropy Function

The Shannon (discrete) entropy is defined by

H(p) = −
X∑
i=1

pi ln pi. (4.1)

We now verify that this function satisfies four important properties.

Continuity

Each term −pi ln pi is continuous for pi > 0; by convention, we set 0 ln 0 = 0. Thus, small changes in the
probabilities pi lead to small changes in H(p).

Non-negativity

For 0 ≤ pi ≤ 1, the product pi ln pi is less than or equal to zero. Hence,

H(p) ≥ 0,

with equality if and only if one of the pi equals 1 (i.e. the outcome is certain).

Boundedness

When all outcomes are equally likely, i.e. pi =
1
X for all i, we have

H(p) = −
X∑
i=1

1

X
ln

1

X
= lnX.

Thus, the entropy is maximized by the uniform distribution and is bounded above by lnX.

Additivity for Independent Variables

If we have two independent random variables x and y with joint probability p(x, y) = p(x)p(y), then the
joint entropy is:

H(x, y) = −
∑
x,y

p(x, y) ln[p(x)p(y)]

= −
∑
x,y

p(x)p(y) ln p(x)−
∑
x,y

p(x)p(y) ln p(y)

= −
∑
x

p(x) ln p(x)−
∑
y

p(y) ln p(y)

= H(x) +H(y).
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Thus, the entropy of independent events is additive.

Problem 4.2: Equivalent Forms of Mutual Information

The mutual information between two random variables x and y is given by several equivalent expressions:

I(x, y) = H(x) +H(y)−H(x, y) = H(y)−H(y|x) = H(x)−H(x|y) =
∑
x,y

p(x, y) ln
p(x, y)

p(x)p(y)
. (4.10)

Derivation

1. Using the Chain Rule: The chain rule for entropy tells us that

H(x, y) = H(x) +H(y|x).

Rearranging gives
H(y|x) = H(x, y)−H(x),

so that
H(y)−H(y|x) = H(x) +H(y)−H(x, y).

2. Similarly, by writing
H(x, y) = H(y) +H(x|y),

we find
H(x)−H(x|y) = H(x) +H(y)−H(x, y).

3. Logarithmic Form: By definition, the mutual information is also given by

I(x, y) =
∑
x,y

p(x, y) ln
p(x, y)

p(x)p(y)
.

A detailed manipulation (using properties of logarithms and the definitions of conditional and joint
entropies) shows that this expression is equivalent to H(x) +H(y)−H(x, y).

Each of these forms emphasizes a different aspect of the information shared by x and y.

Problem 4.3: Error Reduction in a Binary Channel with Error
Probability ϵ

Assume a binary channel where each transmitted bit has an error probability ϵ. We use repetition coding
and majority voting to reduce the error probability.

(a) Three Transmissions (Single Majority Vote)

When the same bit is transmitted three times, the probability of exactly k errors is given by the binomial
formula:

P (k errors) =

(
3

k

)
ϵk(1− ϵ)3−k.

An error occurs if the majority of bits are wrong; that is, if there are 2 or 3 errors. Thus, the overall error
probability is

Perror =

(
3

2

)
ϵ2(1− ϵ) +

(
3

3

)
ϵ3.

For small ϵ, the dominant term is
Perror ≈ 3ϵ2.
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(b) Two-Level Majority Voting (3 Groups of 3 Transmissions)

Suppose now that we send 9 bits organized as 3 groups of 3. First, each group of 3 is decoded using majority
voting (with error probability approximately p ≈ 3ϵ2 as above). Next, we take a majority vote of the three
group decisions. The error probability at the second stage is then

Pfinal =

(
3

2

)
p2(1− p) + p3.

For small p, we approximate
Pfinal ≈ 3p2 ≈ 3 (3ϵ2)2 = 27 ϵ4.

(c) General N-Level Majority Voting

If we repeat the majority voting process N times (each level using groups of 3 bits, for a total of 3N base
bits), the error probability at each level is approximately given by

pk+1 ≈ 3 (pk)
2,

with p0 = ϵ. Hence, after N levels the error probability behaves roughly as

pN ∼ C ϵ2
N

,

where C is a constant resulting from the repeated binomial coefficients. This shows a rapid (roughly double-
exponential) reduction in error probability as N increases.

Problem 4.4: Differential Entropy of a Gaussian Process

Consider a continuous random variable x that is normally distributed:

p(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
.

The differential entropy is defined by

H = −
∫ ∞

−∞
p(x) ln p(x) dx. (4.13)

Derivation

1. Compute ln p(x):

ln p(x) = ln

[
1√
2πσ2

]
+ ln

[
exp

(
− (x− µ)2

2σ2

)]
= −1

2
ln(2πσ2)− (x− µ)2

2σ2
.

2. Substitute into the Entropy Integral:

H = −
∫ ∞

−∞
p(x)

[
−1

2
ln(2πσ2)− (x− µ)2

2σ2

]
dx.

This simplifies to

H =

∫ ∞

−∞
p(x)

[
1

2
ln(2πσ2) +

(x− µ)2

2σ2

]
dx.
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3. Separate the Integral:

H =
1

2
ln(2πσ2)

∫ ∞

−∞
p(x) dx+

1

2σ2

∫ ∞

−∞
p(x)(x− µ)2 dx.

The first integral is 1 (normalization) and the second is the variance σ2:

H =
1

2
ln(2πσ2) +

1

2σ2
· σ2.

4. Combine the Results:

H =
1

2
ln(2πσ2) +

1

2
.

5. Write in Compact Form:
Recognize that 1

2 = 1
2 ln e (since ln e = 1); therefore,

H =
1

2

[
ln(2πσ2) + ln e

]
=

1

2
ln(2πe σ2).

This is the result stated as Equation (4.25).

Problem 4.5: Capacity of a Telephone Line

A standard telephone line is specified to have a bandwidth of

∆f = 3300Hz,

and a signal-to-noise ratio (SNR) of 20 dB.
The Shannon capacity for a band-limited Gaussian channel is given by:

C = ∆f log2

(
1 +

S

N

)
(bits per second).

(a) Calculate the Capacity

1. Convert SNR from dB to Linear:
20 dB corresponds to

S

N
= 1020/10 = 100.

2. Apply the Capacity Formula:

C = 3300 log2(1 + 100) = 3300 log2(101).

3. Approximation:
Since log2(101) is approximately 6.66, we have

C ≈ 3300× 6.66 ≈ 21 978 bits per second,

which is roughly 22 kbps.
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(b) SNR Required for 1 Gbit/s Capacity

Set the capacity equal to 109 bits per second:

109 = 3300 log2

(
1 +

S

N

)
.

1. Solve for the Logarithm Term:

log2

(
1 +

S

N

)
=

109

3300
≈ 303030.3.

2. Solve for S/N :

1 +
S

N
= 2303030.3 =⇒ S

N
≈ 2303030.3 − 1.

3. Express in Decibels:
The SNR in decibels is

SNR (dB) = 10 log10

(
S

N

)
.

Noting that log10(2) ≈ 0.301, we have

SNR (dB) ≈ 10× 303030.3× 0.301 ≈ 912 000 dB.

This value is astronomically high and clearly impractical.

Problem 4.6: The Sample Mean and the Cramér–Rao Bound

Let x1, x2, . . . , xn be independent and identically distributed samples from the Gaussian distribution

N(x0, σ
2).

We consider the sample mean estimator:

x̂ =
1

n

n∑
i=1

xi.

Unbiasedness

Since E[xi] = x0 for all i,

E[x̂] =
1

n

n∑
i=1

E[xi] =
nx0

n
= x0.

Thus, x̂ is an unbiased estimator of x0.

Variance of the Sample Mean

Because the xi are independent,

Var(x̂) =
1

n2

n∑
i=1

Var(xi) =
nσ2

n2
=

σ2

n
.
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Fisher Information and the Cramér–Rao Lower Bound

For a single observation from N(x0, σ
2), the Fisher information with respect to x0 is

J(x0) =
1

σ2
.

For n independent observations, the total Fisher information is

Jn(x0) =
n

σ2
.

The Cramér–Rao Lower Bound (CRLB) states that the variance of any unbiased estimator is at least

Var(x̂) ≥ 1

Jn(x0)
=

σ2

n
.

Since the variance of the sample mean x̂ is exactly σ2

n , it achieves the CRLB.
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